	so Engineering a the	
	CBCS SCHEME	
	LIBRARY	15FC36
USN	Adver, Mangalore	13EC30
Third Semester B.E. Degree Examination, July/August 2021		
Engineering Electromagnetics		
Note: Answer any FIVE full questions. Max. Marks: 80		
1	a State and explain Coulomb's law of force between two point charges and menti	on the units
1	of quantities in the force equation.	(06 Marks)
	b. Three equal charges of 1 μ C each are located at the three corners of a square of Find the electric field intensity at the forth vaccent point of the square.	10 cm side. (10 Marks)
2	a. A line charge $\rho_L = 50 \text{ nC/m}$ is located along the line $x = 2$, $y = 5$ in free space	. Find $\stackrel{\rightarrow}{\mathrm{E}}$ at
	P(1, 3, -4).	(06 Marks)
	b. Derive the expression of electric field intensity due to infinite line charge.	(10 Marks)
3	a. State and prove the Gauss's law. \rightarrow 5 sin 0 cos t	(10 Marks)
	b. Given the flux density $D = \frac{3 \sin \theta \cdot \cos \phi}{r} \hat{a}_r C/m^2$. Find (i) Volume charge density	
	(ii) Total flux leaving the surface of spherical volume of radius 2 m.	(06 Marks)
4	a. State and derive the expression of law of continuity of current.	(07 Marks)
	b. An electric potential is given by, $60\sin\theta$ is E^2 (1) $1E^2$ (0) 25°)	
	$V = \frac{1}{r^2}$ volt. Find V and E at point P(3, 60, 25).	(06 Marks)
	c. Express $\vec{\nabla} . \vec{D}$ in three coordinate systems.	(03 Marks)
5	a. Starting from Gauss's law in integral form, derive Laplace's and Poisson's equa	tions. Write
	the Laplace equation in all the coordinate systems.	. (06 Marks)
	$\vec{F} = (12xx^2 - 6z^2x)\hat{a} + (4x^3 + 18zy^2)\hat{a} + (6y^3 - 6zx^2)\hat{a}$	(03 Marks)
	c. State and prove uniqueness theorem.	(07 Marks)
(a State Diet Severt law Obtain an averagion for magnetic field intensity for over	nt alamant
0	a. State Biot-Savart law. Obtain an expression for magnetic neto intensity for curre	(08 Marks)
	b. Explain the concept of scalar and vector magnetic potential and show that \vec{z}	
	$\vec{A} = \frac{\mu_0}{4\pi} \int \frac{J}{r} dV$. where \vec{A} = Vector magnetic potential and J = current density	(08 Marks)
7	a. Write short notes on force between two differential current elements.	(08 Marks)
	b. A point charge $\theta = -60$ nC, is moving with a velocity 6×10^6 m/s in the direction	on specified
	by unit vector $(-0.48a_x - 0.6a_y + 0.64a_z)$. Find the magnitude of the force of charge in the magnetic field	n a moving
	$\vec{B} = (2\hat{a} - 6\hat{a} + 5\hat{a})mT$	(08 Marks)
	1 of 2	(00 1/141185)
	5	
C Y		

- Derive the expression for the boundary condition for the tangential component at the 8 a. interface between two media with different permeabilities. (06 Marks)
 - If $\vec{B} = 0.5 x \hat{a}_y T$ in a material for which $\chi_m = 2.5$ find, b.
 - (iv) \vec{M} (v) \vec{J} . (iii) H (ii) µ (i) μ_r (10 Marks)

9 Write Maxwell equations in points form and integral form. a. (06 Marks) State and prove Faraday's law. b. (05 Marks)

Given $\vec{H} = H_m e^{j(\omega t + \beta z)} \hat{a}_x A/m$ in free space. Find \vec{E} . c.

5

Ś

S

Derive the expression for Poynting's theorem. 10 a. Write the short notes on skin effect. b.

(05 Marks)

(10 Marks) (06 Marks)